Lead Data Scientist at 84.51°
Academic
Contact
|
Lead Data Scientist at 84.51°
Academic
Contact
|
We'll go around the room. Please share:
The following are the primary learning objectives of this course:
Day | Topic | Time |
---|---|---|
1 | Introductions | 12:45 - 1:00 |
Setting the Stage | 1:00 - 1:30 | |
Conditions | 1:30 - 2:15 | |
Break | 2:15 - 2:30 | |
Iterations | 2:30 - 3:45 | |
Q&A | 3:45 - 4:15 | |
2 | Q&A | 12:45 - 1:15 |
Functions | 1:15 - 2:15 | |
Applying Functions to pandas Data Frames | 2:15 - 2:45 | |
Break | 2:45 - 3:00 | |
Case Study, pt. 1 | 3:00 - 4:00 | |
Q&A | 4:00 - 4:15 |
Day | Topic | Time |
---|---|---|
3 | Q&A | 12:45 - 1:15 |
Case Study Review, pt. 1 | 1:15 - 1:45 | |
Python from the Shell | 1:45 - 2:45 | |
Break | 2:45 - 3:00 | |
Kernels and Environments | 3:00 - 3:45 | |
Python Data Science Ecosystem | 3:45 - 4:00 | |
Q&A | 4:00 - 4:15 | |
4 | Q&A | 12:45 - 1:15 |
Modeling with scikit-learn | 1:15 - 2:15 | |
Case Study, pt. 2 | 2:15 - 3:30 | |
Case Study Review, pt. 2 | 3:30 - 4:00 | |
Q&A | 4:00 - 4:15 |
pandas
, numpy
, scikit-learn
, and seaborn
.and opening it via Anaconda Navigator and Jupyter Lab.
Are there any questions before moving on?